
QualityLogic Services – Mobile Application Testing & Automation

QualityLogic Inc. Page 1 of 12

© 2011 QualityLogic Inc.

Notes on Mobile Application Testing

And Its Automation

Industry at a Glance

Current Situation:

People are accessing the Internet and digital content in general more and more frequently

from mobile rather than fixed platforms. It’s only in the past two years that the players in

these businesses have caught up to their customers in this trend. As is usual in the

application development business, the quality assurance component of the development

pipeline is about a year behind that.

The application development business has become used to open standards over the past ten

years, with open technologies such as MySQL, Java, and the Internet itself. However,

mobile application development is a throwback to the platforms wars of old, where one

platform’s application will not work on another, and cross-portability is lacking, not just in

the code, but in the development pipeline making that code.

In response to these dilemmas, two things will shape up the mobile platform business over

next several years. First, mobile platforms will consolidate to two or three distinct

proprietary standards. Second, HTML5 is going to be big, as it gives access to the hardware-

accelerated look and feel of a native application but is delivered as a platform-independent

web page.

Current Mobile QA Situation:

In the past year the importance of automation in QA testing became apparent to the mobile

development community. Up until this point, increasingly futile attempts at black-box

testing of mobile devices were deemed sufficient. With virtually all mobile applications

dependent on network data and off-device (‘cloud’) storage, QA testing of mobile
applications extends beyond the local application to the network it’s plugged into and must
interact with. This point still escapes the broader industry in their approach to mobile QA.

With the advent of social media, the mobile application must not only be tested with the

networks and systems it is plugged into, but also with third-party analogs over which the

developer and tester have no control (such as Facebook).

QualityLogic Services – Mobile Application Testing & Automation

QualityLogic Inc. Page 2 of 12

© 2011 QualityLogic Inc.

Apple iOS at a Glance

Development Environment Advantages and Disadvantages

For Apple iOS, apps are developed entirely in Objective C on Apple’s own IDE (Xcode).
Despite the paucity of programming skills in the language vis-à-vis Java, Xcode provides the

most thorough end-to-end development environment for a mobile platform. Lots of out-of-

the-box graphical routines, debugging, and QA tools are provided via the integrated

Instruments application.

Xcode compiles test applications to x86 native code and loads them in desktop-hosted

handset Simulators that far-and-away are the best handset analogs in the mobile

development business. Xcode’s iPad and iPhone Simulators have the look, feel, speed, and
general robustness as the same code compiled in ARM native for real handsets. A developer

can achieve a very good approximation of an iOS application’s performance and stability in
the Simulator before ever deploying to a real device.

The iOS device family at present consists of two tablets (iPad 1 and 2), five handsets

(iPhone series), and four PDAs (iPod Touch). Given that the PDAs are essentially iPhones

minus cellular radios, there are basically seven devices spread over three generations for

the developer and QA engineer to account for in the software pipeline. What’s more, for
both form factors display aspect ratios are identical, and there are no extraneous features

such as physical keyboards to account for, making for a much simpler development and QA

process.

Apple maintains tight control on their developers and developer environments. Real devices

are limited to a maximum of one hundred units per company development account.

Development machines that can compile code into Simulators must be provisioned via

Macintosh Security Keychains and must be registered to owners of Apple Developer

Accounts. Provisioning of builds is controlled in four tight schemas - Development, Test,

Beta, and Release - each with its own different set of rights, permissions, and restrictions.

Distribution of applications is through one portal: The Apple App Store. All applications must

be approved by Apple - facilitated through an Apple contact assigned to the account - before

being posted to the App Store. Typical time-to-App Store market from upload to Apple for

review, assuming there are no problems, is anywhere from a week to ten days. Smaller

applications from smaller companies naturally receive less attention, hence greater delays.

The App Store bottleneck precludes currently popular models of software development, such

as Continuous Integration and Agile Scrum methodologies, from being particularly effective.

Defects that make it into a release are going to be stuck in that release for weeks before

any fix or patch can be rolled to the application. Hence, iOS application QA by nature has to

QualityLogic Services – Mobile Application Testing & Automation

QualityLogic Inc. Page 3 of 12

© 2011 QualityLogic Inc.

be much more thorough than current standards for other platforms or web services that can

be fixed and updated in near real-time by their respective owners.

Google Android at a Glance

Development Environment Advantages and Disadvantages

Android OS is a stack built on a Linux kernel for a file system, standard C middleware for

hardware control, and applications developed in open-source Java classes (Apache

Harmony) with numerous special classes for Android alone (standard dialogs, multi-touch

gestures, etc.). The proprietary Davlik virtual machine runs Java applications. Android

applications can be developed by anyone with Java programming knowledge.

Android development uses the Eclipse IDE and the Google-supported Android Development

Kit on any major computer platform (OSX, Windows, or Linux), making Android

development truly open-source and open-platform.

Distribution of applications is through the Android Marketplace and several derivative

subsets of the Android Marketplace (Amazon.com maintains their own Android Market, for

instance). Android applications can be signed, updated, and released to market instantly,

enabling popular methodologies such as Agile Scrum and Continuous Integration to be

employed smoothly in Android software development on a near real-time basis.

Android code is not simulated as is the Apple Xcode iOS environment, but emulated directly

through an Android Virtual Machine on the host development PC. The Android Emulator is

very slow, very buggy, and is not a good analog of any real Android device – making it

useless for QA purposes. Android quality assurance beyond bare code functionality has to be

done on real devices.

The hardware universe of Android is vast, with several dozen devices released just in past

six months, from four major manufacturers (Motorola, HTC, Samsung, and LG). These

devices cover a wide spectrum of screen resolutions and screen aspect-ratios, and

incorporate features such as hardware keyboards that both developer and QA must cover.

Android manufacturers can manipulate Android as they wish, leading to oddities such as

HTC, Motorola, and Samsung devices running the same core version of Android but with

user interfaces completely different among them. In addition, each cellular data provider

has its own version of otherwise identical devices released for their network. So an ‘HTC
Inspire’ on AT&T is also an ‘HTC EVO’ on Sprint and a ‘Droid Incredible’ on Verizon, each
with its own UI tweaks and differences, complicating a testing strategy for coverage all the

more.

QualityLogic Services – Mobile Application Testing & Automation

QualityLogic Inc. Page 4 of 12

© 2011 QualityLogic Inc.

Sikuli IDE: An Ideal Solution for iOS Automation

Brief Introduction to Sikuli:

Sikuli IDE is a tool maintained under license from MIT and is freely available. Sikuli is based

on the Python language and is similar in operation to automation test harnesses that are

industry standards for web application testing, such as Selenium.

Sikuli, however, has a critical difference compared to harnesses such as Selenium in that it

is not built to test run particular APIs or technologies in defined tests. Instead, Sikuli has

one embedded API based on the emerging technology of machine vision; Sikuli ‘looks’ at the
screen the way a real user does.

Advantages of Sikuli:

When scripting a Sikuli test, an engineer tells Sikuli to find an element on the screen using

screen captures of the elements themselves embedded into the script. Then using Python,

the engineer specifies ways Sikuli is to interact with that element using mouse clicks and

keyboard inputs.

As a result, a breakthrough of sorts is achieved: Sikuli testing scripts look for and interact

with elements on a screen exactly the same way a human does. What’s more, complete API
and platform independence is achieved this way. No matter the application, API, whatever,

Sikuli can interact with it. If it’s on a screen, you can test it with Sikuli.

There is also an ever-increasing level of sophistication to the Sikuli scripting environment.

On one hand, a black-box tester can put together - in fairly short order - a sophisticated

automatic application tour script. On a more advanced level, Sikuli scripts can be configured

by an advanced SDET-level engineer (Software Design Engineer in Test [SDET] - a

developer who writes software for the purpose of testing other software) using Python logic

to run as defined pyUnit test scripts (Python version of the JUnit test wrapper) directly from

a command line, importing specific classes, image directories, and logic dependencies to

react to results of the test (IF, RANGE, etc.) for Sikuli to run.

Disadvantages of Sikuli:

Sikuli IDE’s advantage of machine vision is also, in a way, its ultimate limitation. For

instance, Sikuli can be set up to automate a web-application through a browser. However, if

the browser is changed (Firefox instead of Chrome), or if even the UI ‘skin’ of the same
browser is changed, Sikuli will not ‘see’ what it needs to see. This also occurs if you change
the resolution or color-depth of the native display you wish to run your tests on. These are

basic limitations and are obviously far-reaching in their scope.

QualityLogic Services – Mobile Application Testing & Automation

QualityLogic Inc. Page 5 of 12

© 2011 QualityLogic Inc.

Sikuli as the Ideal Automation Solution for iOS Development:

As mentioned before, the Xcode IDE/iOS SDK Simulator environment provided by Apple is

truly a WYSIWYG version of the iOS experience in real hardware. The only limitations to

testing on the Simulator are Alert events (real hardware ID is part of the event JSON

payload from a network) and financial transactions through Apple’s App Store Sandbox (real
device synced with real iTunes account required). Everything else an iOS device does can be

performed on the host Simulator.

The ‘walled garden’ of the iOS Simulator unintentionally plays to all of Sikuli’s strengths and
obviates the majority of its weaknesses. The Simulators are an identical native resolution

irrespective of the host’s native monitor resolution. There are only a few devices in the iOS

universe, with identical UI elements, permitting the same Sikuli script to run on any

Simulated iPhone. That fact, when combined with a fixed native host resolution and

browser, allows Sikuli to use its strengths in profound ways.

For instance, let’s say the iPhone application under test is a networked game, and the test is
to load the application from source, compile and build the application, then launch it on the

Simulator and interact with the game. Interacting with the software will generate an event

that posts to a Facebook user’s wall as part of the features of the application. Sikuli provides

the following capabilities:

1. With Sikuli automation, you can have Sikuli launch Xcode, access the repository

of the build using Xcode’s Subversion utility, identify the master branch, and
compile the application to a specific iOS Simulator.

2. Sikuli can visually verify build success by literally reading ‘Build Successful’ in

Xcode. (Sikuli Machine Vision uses OCR in its machine vision. Sikuli can read!)

3. Sikuli then launches the application, logs in to a pre-defined game-user’s
account. By looking for visual elements and clicking (‘touching’) the Simulator,
Sikuli will interact with the game.

4. After completing interaction with the game, Sikuli can launch the host

Macintosh’s Safari browser, go to Facebook, login with a pre-defined Facebook

account, and confirm the Facebook wall event appeared and is in good order.

5. It can then launch an Oracle SQL Thin Client (as an example) and run a pre-

defined SQL script on the application developer’s own database and check their
side of the Facebook-generated event.

In that test series, the automation script interacted with a development environment,

compiled a build, interacted with the application, interacted with a browser on a Facebook

account, and then checked the backend of the game developer’s environment with a
database query. Sikuli can run a linear end-to-end test of a mobile application, and the

entire networked environment and social-media footprint it interacts with. There is no other

automation tool that can remotely approach that flexibility and power of interaction across

so many applications and technologies in one.

QualityLogic Services – Mobile Application Testing & Automation

QualityLogic Inc. Page 6 of 12

© 2011 QualityLogic Inc.

What’s more, using the simple auto-tour implementation of the IDE, a good scripter can put

that whole test together as a long linear ‘tour’ in about six hours. It would take at least
twice that amount of manpower and debugging to automate the Simulator interaction alone

in the Xcode Instruments Java tool.

 At the SDET level, as the tours become more and more detailed, the tour scripts can be

readily converted into defined unit tests using setup and teardown methods common to the

Junit framework as implemented in Python (‘pyUnit’) and adapted to command-line

precision. This affords a gradient of input and detail of tests where the whole team - from

black-box tester to high-level SDET Engineer - can contribute to creating an end-to-end

automation solution over the development lifecycle.

Between the nature of the iOS development environment and power and flexibility of Sikuli’s
machine vision, this is the ideal and easiest solution for iOS application automation today.

Android Automation: No Easy Answers (Yet)

Android Emulator Introduction:

The Android Emulator is a user-configurable ‘Skin’ built by the developer as a testing
environment. The Emulator can be configured to have all the elements - such as hardware

keyboards and custom display resolutions - seen in real Android devices emulated as a true

stand-alone virtual device on the host.

This emulation makes Android Virtual Devices (AVDs) notoriously slow on the host, with

large lag times between user input and resulting outputs on the screen. The display itself

must be carefully calculated between the host’s resolution and the AVD’s resolution so as to
always be a perfect integer; otherwise the AVD will alias its display to the host. This makes

the emulator’s graphics appear ‘fuzzy’ and low quality, not to mention slowing the

emulator’s response down (and increasing the host’s workload) even more.

This peculiar requirement - combined with ever-growing display resolutions of real Android

devices - leaves tough choices for a developer as the integer solutions line up between the

host and the desired AVD screen. Some resolutions are very large on the host, others very

small: each is different depending on the host’s native resolution and DPI. In addition, the
screen elements of a stock Android AVD are not accurate representations of real-world

devices with their custom UI’s and built-in elements: each differs from manufacturer to

manufacturer and Android release to Android release (currently ten-plus in the SDK).

Sikuli and Android in General:

Inverse to the iOS experience, the Android AVD environment amplifies Sikuli Machine

Vision’s weaknesses and undercuts its strengths. Only with the most tightly-controlled host

QualityLogic Services – Mobile Application Testing & Automation

QualityLogic Inc. Page 7 of 12

© 2011 QualityLogic Inc.

and AVD environment will Sikuli consistently ‘see’ what it needs to test on an AVD screen,
and although it is possible to fully automate the Android Emulator with Sikuli (and all the

benefits it entails), there is one more problem: Emulators are a poor analog of real Android

devices.

While good for a developer checking code functionality, running QA on an application in the

Emulator will lead to an application that will run well on the instance of the Emulator under

test and little else (not even on other Emulator instances, given all the variables that go into

them). The only truly valid testing - manual or otherwise - for release-quality Android

application sign-off is on real Android devices.

Robotium: ‘It’s like Selenium, but for Android’

Given the limitations of the Android SDK Emulator, an open-source solution has appeared -

endorsed and nurtured by Google itself - over the past year that can automate Android

applications in the Emulator but, more importantly, compile with the application and run on

real devices. It is called ‘Robotium.’

Robotium is as its slogan suggests: ‘Selenium for Android.’ Although it runs in Eclipse rather

than its own IDE, like Selenium Robotium is a special API using custom methods to invoke

Android OS functions, such as typing text, clicking Android UI buttons, etc. Through writing

tests in the Eclipse framework and compiling the application under test with the Robotium

‘TestRunner,’ the application can be automated, and that compile can be installed and run
on a real device. This eliminates the spurious results and slowness of the Android AVD

environment and enables a developer to deploy the application to multiple devices to test

concurrently, giving a semblance of the device coverage Android QA demands.

There is a limitation with Robotium and real devices, and that is debugging with automation.

If you run the test and there is a problem, you must go back to the IDE, figure out where

the test ‘broke,’ fix it, recompile the build, redeploy it, and run the tests again. For complex,
interactive applications, this will involve a considerable QA effort to debug the application if

the intent is confidence in stability across, say, three devices representing three Android

SDK targets – a pittance of what’s out there in the wild.

TestDroid: An Emerging, Proprietary Solution to Android Robotium Automation.

With the problems outlined above, it is only natural that a solution would appear given the

burgeoning size (and money) in the Android development world currently. The most viable

to emerge so far is a product known as TestDroid Recorder offered through a start-up

company called BitBar.

TestDroid Recorder is the missing piece from the ‘Selenium’ analog Robotium claims to be
by itself. It allows user inputs - directly from a real device - to be recorded as tests using

Robotium methods. This allows a black-box tester (after appropriate setup of the Robotium

TestRunner) to execute a manual script through an application, and TestDroid will record all

QualityLogic Services – Mobile Application Testing & Automation

QualityLogic Inc. Page 8 of 12

© 2011 QualityLogic Inc.

the inputs into one single Test class, which can then work as an automation script. A more

sophisticated user, by inserting setup and teardowns in the test runner, can build a real

Junit script of unit-tests. Since it runs as a recorder instead of manually writing the tests,

TestDroid saves a lot of time both writing and de-bugging the tests, and lets the whole QA

team contribute to the automation process.

What Android Devices to Test?

As mentioned before, there are a vast number of Android devices on the market. As an

example, AT&T sells three iPhones today: the 3GS, the iPhone 4, and the new iPhone 4S.

AT&T also sells approximately 30 Android devices from at least six manufacturers and for

development using different SDK ‘targets.’

An emerging solution to this intractable (and growing) problem is a company called

DeviceAnywhere. DeviceAnywhere is an end-to-end QA service employing both a custom

automation solution and ‘banks’ of devices remotely accessible to the developer, to run
those custom automation tests on. It is a vast service for developers with vast budgets.

Outside of cost, the service is consistently challenged by the sheer number of both Android

devices constantly released and guessing which ones developers will want to use. Lead

times between a new device launching and its availability on DeviceAnywhere’s service can
be several weeks and involve modifications of contracts between the developer and

DeviceAnywhere.

For a developer with limited (not Facebook-size) resources, there are two good strategies to

use to cope with such a universe of devices.

The first strategy is to develop to the most popular devices. At any given time, only four or

five models comprise the bulk (%70+) of Android’s constantly evolving and growing
installed base.

The other option is to develop to Google’s own standard reference devices, the Nexus
series. There are currently three such units, the Nexus One, the Nexus S, and the very new

(as of this writing) Nexus Galaxy. Each represents a milestone in the Android SDK release

schedule, and Nexus devices are pure Android; there are no custom elements and tweaks

from manufacturers. Nexus devices are also ‘unlocked’ from any carrier or manufacturer,

giving them a range of access to developers and testers alike not available in normal-

release Android devices.

A potential solution to Android automation and development is outlined below:

QualityLogic Services – Mobile Application Testing & Automation

QualityLogic Inc. Page 9 of 12

© 2011 QualityLogic Inc.

Robotium + TestDroid + Top Five Devices:

The strategy is as the title describes. A small application company has completed the

application to where at least some of its functionality is approaching code-complete status,

and is ready to move from Emulator in dev to a compiled build running on a device.

Assuming one developer and one black-box QA resource, the process would be as follows:

1. The developer sets up the Test Runner for the QA tester to execute a manual script.

2. The QA tester executes the manual script using a pilot test device.

3. Assuming success, the developer compiles the build with the Robotium test-runner

class, and instructs the QA resource to deploy it to the other four devices, launch the

tests, and return the results – noting any differences among the four devices in their

behavior with the application.

4. As the software evolves in functionality towards function-complete, the developer

reviews and modifies the automation tour into discernible unit-tests with hard-assert

properties. This achieves a steady increase in granularity and tighter Pass conditions

towards a release candidate as run by the QA resource, who consistently reports

issues found in the tests as they are run.

5. The release candidate is function-complete and passes the tests on all five devices.

Now with a tightly-defined and debugged test-runner, the developer and QA resource

can try running the application on a multitude of different devices available to them

from friends, family, anybody with an Android handset the developer can ‘borrow’ for
a final confidence run.

For small to mid-size development efforts, this achieves thorough code coverage on a wide

variety of devices. (Two developers and two QAs can run the tests against ten or more

devices in a slightly scaled-up version of the same methodology.) Such an approach can

approximate 90% of an Android application’s potential installed user-base at a relative

fraction of the cost of manually testing all those devices alone.

A Future of Sikuli Automation for Real Android Devices.

The Testdroid Recorder method outlined above is perhaps the best compromise between

automation, device coverage, and manpower efforts for the small to mid-size Android

development house. However it is a compromise and, like every other automation solution,

cannot automate an end-to-end experience for an application’s interaction with networks
and storage beyond the Android device.

Both Development business and QA must become aware that applications are more and

more dependent on these outside environments to work properly. Other than some notable

stand-alone games (Angry Birds!), virtually every significant application for mobile today is

dependent on inputs and outputs beyond the local device; and, given they must work

together to function properly, ideally they should be tested together in the same manner.

QualityLogic Services – Mobile Application Testing & Automation

QualityLogic Inc. Page 10 of 12

© 2011 QualityLogic Inc.

The only automation tool flexible enough to work between so many environments at once is

one that is API independent. The only automation tool that can do such a thing is Sikuli and

its machine vision.

Controlling Real Android Devices with Sikuli:

A small, unsupported open-source project known as Android Screencast has emerged in the

unofficial Android community. It is a piece of Java code you ‘drop’ into a specific folder of
the Eclipse Android SDK development environment. The application works through a

command-line interface of the Android Developer Bridge and enables an Android device

plugged into the host machine to be displayed on its monitor, and to be controlled by the

host with mouse clicks and keyboard events analogous to an iPhone Simulator.

There are significant limitations with Android Screencast. The first is that Screencast is

being designed to display the broadcast device’s display in any sized window on the host.
This entails a layer of aliasing and resizing the input signal that makes the signal lose many

frames and lag the actual device’s display by several seconds between device input and
output.

The second limitation is that Android devices do not output their display through the USB

port by default, nor accept user-inputs coming back the same way. The only devices that do

allow such are ‘unlocked’ devices. Unlocked devices from carriers - while popular - are far

less stable than an identical device running the carrier’s distribution of the Android
operating system, even the same Android release.

A solution to the lock–problem: Google Nexus Reference Devices

Google Nexus devices are a series of three devices sold by Google specifically to enthusiasts

and as a development reference. The primary advantage to these devices is they have

reference releases of the Open Handset Alliance’s ‘official’ distributions of Android SDK
targets, and they are unlocked by design. Android Screencast will work with a Google Nexus

device directly, without any unsupported hacks or Android OS distributions.

An opportunity emerges not yet extant:

While Android Screencast is a powerful tool, an ideal automation tool for Sikuli to access an

Android device would be one designed to express the broadcast signal on a directly-

addressed-per-pixel buffer to the host display. In other words, if the device display is WVGA

(800 x 480 pixels) the output to the host is directly addressed at 800 x 480 pixels, no

resizing. In an ideal implementation, this would involve using a very high-definition

widescreen monitor oriented in Portrait.

With the pixels in the signal directly addressed in such an application, the output signal from

the device would appear consistently and correctly on the host, and would lose no frames in

time wasted on resizing the buffer. The Sikuli script would be written using the actual image

assets of the application under test before the application was ever compiled and then run

QualityLogic Services – Mobile Application Testing & Automation

QualityLogic Inc. Page 11 of 12

© 2011 QualityLogic Inc.

directly on the Android device. The developer at that point could build the application to how

it was envisioned to work and scoped in the test. The first build would be ready for a

complete automation run, on a real device, after the very first compile in such a

development cycle.

What about the issues of device testing outside of the actual fixes as bugs were found, such

as the uninstall, recompile, re-install, and re-launch of the tests? This is where Sikuli’s
flexibility becomes a serious advantage: all those functions involve interacting with the

Eclipse environment – and can be automated with Sikuli, as well. The developer would

literally identify the fix, implement it, and then hit ‘Run’ on the Sikuli script again and the
whole process - not just the unit tests themselves - would be completely executed. It’s like
having a black-box tester built into the development environment.

With a sufficiently developed piece of software, the same end-to-end test script as

previously described for iOS emerges for Android: Testing the application and all things

unique to the device that it touches in one complete test becomes possible.

And in an interesting potential trick, once such a Sikuli test passes to satisfaction you could

set up the TestDroid Robotium Recorder in Eclipse, run the Sikuli script, and literally

automate your automation script for other devices beyond the Google Nexus reference units

needed for release candidate testing. Now that would be some automation!

Nobody has developed such a successor to Android Screencast, but such an application

combined with Sikuli IDE has a potential to be ‘the’ solution that everyone is looking for

today in the Android application development business.

QualityLogic Services – Mobile Application Testing & Automation

QualityLogic Inc. Page 12 of 12

© 2011 QualityLogic Inc.

Links:

http://sikuli.org/ - Project Sikuli

http://developer.android.com/index.html - Android Developer’s Portal

http://code.google.com/p/robotium/ - Android Robotium Portal (Note Emulator

video is just Settings panels, speed in Emulator with real application is incredibly

slow).

http://bitbar.com/ The makers of TestDroid, and note the intriguing not-yet-

released Test Server.

http://www.google.com/nexus/ The latest Nexus reference device from Google.

http://www.deviceanywhere.com/mobile-application-enterprise-testing.html

DeviceAnywhere

http://code.google.com/p/androidscreencast/ Android Screencast

http://developer.apple.com/devcenter/ios/index.action iOS Developer Portal

(requires Developer Connect account to access downloads and anything other than

Featured Content and Libraries)

http://sikuli.org/
http://developer.android.com/index.html
http://code.google.com/p/robotium/
http://bitbar.com/
http://www.google.com/nexus/
http://www.deviceanywhere.com/mobile-application-enterprise-testing.html
http://code.google.com/p/androidscreencast/
http://developer.apple.com/devcenter/ios/index.action

